Improvement in strength and ductility of flame-retardant magnesium alloy through uniaxial hot pressing

نویسندگان

چکیده

Abstract. Flame-retardant magnesium alloys containing calcium element are attracting attention from aircraft and automotive industries because of their low density high ignition temperature. Though thermomechanical treatments such as hot extrusion effective to increase mechanical properties, they cause an in cost. Present study focusses on commercial Mg-6Al-0.4Mn-2Ca Mg-9Al-1Zn-2Ca alloys. Simple uniaxial pressing process is performed these alloy plates. Tensile tests at room temperature revealed that the pressed have tensile strength elongation. Microstructural observation clarified improved properties were mainly due dynamic recrystallization during pressing. The present has a potential simple treatment for flame-retardant

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ductility Improvement of an AZ61 Magnesium Alloy through Two-Pass Submerged Friction Stir Processing

Friction stir processing (FSP) has been considered as a novel technique to refine the grain size and homogenize the microstructure of metallic materials. In this study, two-pass FSP was conducted under water to enhance the cooling rate during processing, and an AZ61 magnesium alloy with fine-grained and homogeneous microstructure was prepared through this method. Compared to the as-cast materia...

متن کامل

Multi-Objective Optimization of a Wrought Magnesium Alloy for High Strength and Ductility

An optimization technique is coupled with crystal plasticity based finite element (CPFE) computations to aid the microstructural design of a wrought magnesium alloy for improved strength and ductility. The initial microstructure consists of a collection of sub-micron sized grains containing deformation twins. The variables used in the simulations are crystallographic texture, and twin spacing w...

متن کامل

Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process

Magnesium alloys are highly desirable for a wide range of lightweight structural components. However, rolling Mg alloys can be difficult due to their poor plasticity, and the strong texture yielded from rolling often results in poor plate forming ability, which limits their further engineering applications. Here we report a new hard-plate rolling (HPR) route which achieves a large reduction dur...

متن کامل

Strength and ductility with {101̄1} — {101̄2} double twinning in a magnesium alloy

Based on their high specific strength and stiffness, magnesium alloys are attractive for lightweight applications in aerospace and transportation, where weight saving is crucial for the reduction of carbon dioxide emissions. Unfortunately, the ductility of magnesium alloys is usually limited. It is thought that one reason for the lack of ductility is that the development of - double twins (DTW)...

متن کامل

Improvement in Char Strength with an Open Cage Silsesquioxane Flame Retardant

Different characterization techniques were used to study the hydrolysis and condensation reaction kinetics of 3-methacryloxypropyltrimethoxysilane (MAPTMS) to obtain open cage silsesquioxane oligomers. The formation of hydrogen bonds, which condition the chemical structures of the resulting products, was identified. Improved thermal and fire resistant behavior of unsaturated polyester (UP) comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials research proceedings

سال: 2023

ISSN: ['2474-3941', '2474-395X']

DOI: https://doi.org/10.21741/9781644902615-35